


Project 90

BY LARRY IN CRYPTOGRAPHY — 01 DEC 2025

Rethinking Remainder: Could a Simple Math Trick Supercharge Modern Crypto?

A developer recently sparked a fascinating debate by proposing a new take on modular arithmetic, a cornerstone of digital security. Dubbed 'REIST Division,' this method promises a staggering 6x speedup for polynomial additions, a critical operation in modern lattice-based cryptography like Kyber ...

A Symmetrical Twist on a Crypto Mainstay

In the world of software optimization, we're all chasing speed. Whether it's shaving milliseconds off a web page's load time or squeezing more performance out of a server, faster is almost always better. This is especially true in cryptography, where complex mathematical operations must be both ironclad secure and lightning-fast. So, when a developer comes along claiming a **6x performance boost** in a core crypto function, people tend to pay attention.

Recently, a programmer experimenting with lattice-based cryptography—the foundation for next-gen standards like **Kyber** and **Dilithium**—shared an intriguing discovery. The work centered on **modular arithmetic**, that thing most of us learned in math class and promptly forgot. It's the concept of remainders, like how 14 divided by 5 leaves a remainder of 4. In crypto, this isn't just grade-school math; it's a fundamental building block. The developer proposed a small but powerful change to how we calculate this remainder.

Traditionally, the remainder (**T mod B**) is always a positive number between 0 and the divisor. This new approach, which they called **REIST Division**, uses a *symmetric* interval instead. Think of it this way: instead of finding the distance from the last multiple, you find the *shortest* distance to the *nearest* multiple, which could be forwards or backwards. This means the remainder can be positive or negative, but its absolute value is smaller. Why does this matter? Because this seemingly simple change makes the whole reduction step **branchless**. There are no '*if-this-then-that*' decisions, which are notoriously slow for modern processors. It becomes a clean, additive process that can run in parallel across multiple lanes (a technique known as **SIMD**), resulting in that eye-popping **6x speedup** on **ARM chips**.

The Community Weighs In: Genius or "Crackpot Alert"?

Of course, in technical communities, bold claims are always met with healthy skepticism. You can't just drop a paper and expect everyone to accept it at face value. The initial reaction was a perfect example of this peer-review-in-action.

One of the first comments politely flagged a concern many have with new academic papers: the language felt a bit too 'exotic.' The commenter noted that papers that don't

ground their ideas in familiar theory can sometimes be a red flag—a polite way of raising a **'crackpot alert.'** It's a valid point. If an idea is sound, it should be explainable using established concepts.

To his credit, the author's response was a masterclass in handling constructive criticism. Instead of getting defensive, he thanked the commenter for the honest feedback and used it as an opportunity to clarify. He explained that **REIST Division** is closely related to well-known concepts like **'balanced modular arithmetic'** and **'symmetric residue systems.'** The goal wasn't to invent something from nothing, but to formalize an idea. This exchange was crucial; it took the idea from potentially abstract and isolated to something grounded in real number theory.

"Wait, Haven't We Seen This Before?"

Another line of questioning came from an even more practical angle. Another user pointed out that this concept of using a signed remainder isn't entirely new to lattice crypto. The specification for **Dilithium**, for example, already uses a similar notation. They explained that developers often choose different representations of numbers—signed, unsigned, or other forms—for performance or security reasons. Sometimes a symmetric representation is used because it minimizes the size of numbers, but it's not always faster because comparing with both a positive and negative bound can be more work than just checking if a number is positive.

This is where the author's broader vision became clear. He acknowledged that yes, these ideas pop up in an ad-hoc way in different algorithms. The whole point of **REIST**, he argued, was to provide a unified, formal definition for this way of thinking. It's not just a crypto trick; it's a model for any system where a remainder acts more like a signed 'deviation' or 'correction term'—think control loops, scheduling, or simulations. His contribution wasn't necessarily the invention of the signed remainder, but an attempt to create a consistent framework for it.

A Clash Over the State of the Art

The most pointed critique came from a user who challenged the entire premise of the performance gain. They stated that in many modern implementations, a technique called **'lazy reduction'** is used. This method avoids reducing numbers after every single

addition, saving the cleanup work for after multiplications. They argued that this standard approach is *already* branchless and the author wasn't comparing his method to the real state of the art.

Here, the discussion highlighted a fundamental misunderstanding. The author clarified that **REIST** isn't meant to be a simple replacement for an optimization trick like lazy reduction. It's an entirely different arithmetic model. It's a reinterpretation of what **T mod B** even means. While lazy reduction is a smart pipeline optimization for the classical model, **REIST** proposes a different model from the ground up—one that happens to be symmetric and addition-only by its very nature.

So, What's the Real Takeaway?

After all the back-and-forth, a clearer picture emerges. **REIST Division** isn't a silver bullet that will universally speed up all computing. It's a specialized tool that shows remarkable promise for a specific, but very important, workload: polynomial additions in lattice-based crypto. The **6x speedup** is real, but its applicability is narrow.

The real story here might be less about the specific algorithm and more about the process of innovation itself. A developer shared an idea. The community stress-tested it, poked holes in it, and forced the creator to connect it to the wider world of mathematics and computer science. Through this debate, the idea was refined from a seemingly isolated 'trick' into a formally defined concept with clear precedents and a specific purpose.

Progress isn't just about lone geniuses having eureka moments. It's about proposing ideas, listening to feedback, and collectively building a deeper understanding.

Will 'REIST Division' become a household name among programmers? Maybe, maybe not. But the discussion is a fantastic reminder that progress isn't just about lone geniuses having eureka moments. It's about proposing ideas, listening to feedback, and collectively building a deeper understanding. Even the most basic mathematical

tools we use every day can be looked at from a new angle, and sometimes, that new perspective makes all the difference.

[← PREVIOUS ISSUE](#)

Is the NSA Hiding a Backdoor in Our Quantum-Proof Future? The ML-KEM Debate

[NEXT ISSUE →](#)

Could LLVM Finally Fix Crypto's Nagging Side-Channel Problem?

Project 90 © 2025

[Sign up](#)

[Link 1](#)

Powered by Ghost